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Abstract—Facial Expression Recognition (FER) systems often
fail to generalize across diverse populations due to significant
biases in existing datasets; particularly the under-representation
of atypical facial morphologies such as facial palsy. This lack of
representation leads to both technical shortcomings and ethical
concerns, limiting the inclusiveness and fairness of FER in real-
world applications. In this work, we present a novel synthetic
data generation method —AFET (Asymmetric Facial Expression
Transfer)— designed to simulate asymmetric facial expressions
such as those observed in facial palsy. Our method blends halves
of neutral and expressive faces from the same identity using
a combination of facial landmark detection, locally weighted
regression, and mesh-based warping for intermediate image
generation. The resulting images maintain anatomical plausibil-
ity, making them suitable for model training and evaluation.
Qualitative and quantitative evaluations demonstrate that our
approach produces realistic facial asymmetry. By enabling the
synthetic generation of underrepresented facial conditions, our
method contributes to more equitable FER systems and offers
a step forward in the ethical deployment of affective computing
technologies.

Index Terms—Affective computing, facial expressions, bias,
synthetic data, facial palsy

I. INTRODUCTION

Facial Expression Recognition (FER) plays a critical role in
numerous applications, ranging from human-computer interac-
tion and social robotics to driver safety and medical diagnosis
[1]. By interpreting a person’s facial expressions, such methods
can enhance user experiences in virtual environments, improve
accessibility tools for individuals with disabilities, and support
healthcare professionals in monitoring patient conditions.

However, despite its widespread use, FER systems suffer
from significant limitations in terms of performance and inclu-
sivity, largely due to bias in existing datasets [2], [3]. Many of
these datasets underrepresent demographic factors such as race
[4], gender [5], [6], and age [7], [8], as well as physiological
variations including facial deformities or conditions like facial
palsy [9]. Models trained on such biased data frequently fail
to generalize well to underrepresented groups [3], particularly
individuals with facial deformities or conditions [9], [10].
Consequently, the lack of representation leads to poor fea-

(a) Palsy Image (c) Palsy Generation
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Generation

Fig. 1. Illustration of AFET: Asymmetric Facial Expression Transfer.

ture learning, which leads to reduced model performance in
realistic, nuanced scenarios, limiting their applicability in real-
world contexts. This not only impairs model accuracy but also
underscores deeper ethical concerns related to inclusivity and
bias in AI systems.

Additionally, with the rising emphasis on privacy protection
and legal regulations such as the General Data Protection
Regulation (GDPR) [11] and the AI Act [12], non-targeted
scraping of facial images online or from CCTV cameras is
prohibited. This intensifies the need for new data collection
strategies that respect both individual privacy and regulatory
frameworks, justifying a move toward synthetic datasets.

This paper addresses a specific and often overlooked chal-
lenge in FER: the underrepresentation of atypical facial mor-
phologies, particularly those involving facial asymmetry, such
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Fig. 2. The target facial image is synthesized with asymmetric expression by first generating morphed images between an input neutral face and expression
face followed by column-wise splicing and combining of the corresponding morphed images.
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Fig. 3. An illustration of estimating the dividing curve that splits the face
into two halves from Mediapipe landmarks using locally weighted regression.

as facial palsy [10]. Thus, this study seeks to answer the
following question:

How can synthetic data generation be used to real-
istically and ethically model facial deformities for FER
systems?

To address this, we propose a novel data generation method
—AFET (Asymmetric Facial Expression Transfer)— that sim-
ulates asymmetric facial expressions such as those seen in
facial palsy using morphing and blending techniques [13]. Our
approach operates on facial images of healthy subjects and
produces realistic facial palsy variants by stitching halves of
differently expressed versions of the same face.

We demonstrate that our method produces realistic visual-
izations of facial palsy, outperforming direct face-reenactment
[14] baselines in terms of continuity and asymmetric ex-
pression generation. The generated images are derived from
manipulating facial landmarks of healthy faces, therefore,
we can also derive the facial landmark annotations of the
generated facial palsy images. This enables the training of
models that could perform better in cases of facial deformity.
This not only enhances accuracy for the cases of atypical
facial morphologies but also contributes to a more ethical and
inclusive deployment of AI technologies.

The subsequent sections of this paper are structured as fol-
lows. Section II covers background and related work. Section
III provides the details of our method. Section IV discloses the
results of the evaluation of our approach. Section V discusses
how we address the research question and finally concludes
the paper.
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Fig. 4. An intermediate morphed image is generated by warping towards an
interpolated landmark between the expression face and the neutral face.

II. BACKGROUND AND RELATED WORK

A. Bias and fairness in FER

FER systems have consistently demonstrated performance
disparities across demographic groups, raising significant con-
cerns about fairness and inclusivity. Multiple studies have
shown that state-of-the-art FER models perform dispropor-
tionately poorly on faces from underrepresented groups, par-
ticularly those varying in race [4], gender [5], [6], and age
[7], [8]. Training facial expression recognition requires large
datasets. The datasets that are commonly used for this task
are not necessarily composed of an even distribution regarding
attributes such as race, gender, and age [15]. These disparities
severely impact the performance of the models, yielding lower
performances for the minority groups [3]. A plethora of
methods have been used by researchers to mitigate bias [16]–
[18].

The consequence of biases extends beyond technical perfor-
mance; they may propagate existing societal inequities when
FER is deployed in real-world applications such as education
or healthcare [19]. For instance, misinterpretation of emotional
states in clinical settings could lead to diagnostic errors or
unequal treatment. Addressing bias in FER is therefore not
only a matter of accuracy but also of ethical responsibility
and social impact.

B. Underrepresentation of atypical facial morphologies

While demographic bias is increasingly recognized, another
critical dimension remains underexplored: the representation
of individuals with atypical facial morphologies. These include
congenital conditions (e.g., cleft lip), acquired deformities
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Fig. 5. LivePortrait changes the expression of an input identity image based
on an input driving image.

(e.g., due to trauma or surgery), and neurological or muscular
impairments (e.g., facial palsy) that affect facial expression
symmetry or movement [9].

Existing FER datasets rarely include such faces, leading to
a double marginalization: both underrepresentation in data and
poor recognition accuracy by trained models. In many cases,
these individuals are systematically excluded from training and
evaluation, resulting in systems that fail to detect or correctly
classify expressions for an underrepresented segment of the
population.

There are a few datasets specifically curated for facial palsy
analysis, however, they vary significantly in coverage and an-
notation richness. The YouTube Facial Palsy dataset [20] offers
in-the-wild videos from 21 patients but lacks standardized
landmarks or AU labels. The MEEI dataset [21] provides high-
resolution, lab-controlled recordings with severity scores but
no dense facial annotations. The Toronto NeuroFace dataset
[22] includes clinical videos from 36 patients, annotated with
68 landmarks. Finally, the AFLFP dataset [9] contains images
from 88 subjects with 68 manually annotated facial landmarks.
Overall, no existing dataset combines diverse facial palsy
expressions with both dense landmarks and AU annotations
required to train FER models that could generalize to atypical
facial morphologies.

C. Synthetic facial image generation

In response to data scarcity and privacy challenges, synthetic
data generation has emerged as a powerful tool for augmenting
and diversifying training datasets in FER. Techniques such as
generative adversarial networks (GANs), 3D morphable mod-
els, and parametric facial simulators have been widely used to
create artificial faces with varying expressions and attributes
[23]–[26]. These methods enable controlled manipulation of
facial identity, pose, lighting, and emotion.

More recently, diffusion models [27] have shown state-of-
the-art performance in generating high-fidelity and diverse
facial images, outperforming GANs in terms of image realism
and mode coverage. However, since these models are trained
on normal healthy faces, their ability to create medical condi-
tions such as facial deformities are limited.

Fig. 6. Examples of real-life facial palsy patients from the MEEI dataset [21].

Synthetic data generation of facial deformities not only
helps mitigate bias by improving representation but also offers
a privacy-preserving alternative to scraping real images from
the web or surveillance footage.

D. Regulatory and Ethical Considerations

The use of facial data is subject to increasing ethical
concerns and legal regulations, particularly within the context
of the European Union. The GDPR classifies biometric data
as sensitive personal information, placing strict limits on its
collection and use without explicit consent [11]. Additionally,
the AI Act prohibits untargeted scraping of facial imagery
from online sources or CCTV footage [12]. As a result, there
is a growing need to develop FER training datasets that are
both ethically sourced and legally compliant. Synthetic facial
image generation offers a promising path forward.

III. METHOD

Our goal is to synthesize realistic facial palsy expressions
by modifying standard facial images of healthy individuals.
This enables the creation of diverse synthetic datasets from
existing facial image collections. Our approach, AFET, sim-
ulates facial palsy by blending one half of a face displaying
a neutral expression with the corresponding half of the same
face showing an expressive state. This process involves first
estimating the vertical dividing curve that separates the two
facial halves (Section III-A), followed by splicing and stitching
the corresponding halves of the two face images (Section
III-B). Initially, our method requires access to two distinct
facial expressions of the same individual which is feasible to
extract from videos but not for static images. We overcome
this challenge by generating different expressions from a single
input image (Section III-C).



Fig. 7. Examples of our palsy face generations on different face identities.

A. Estimating the dividing curve of the face

To accurately separate the two halves of a face, we first
estimate a dividing curve that follows the natural contour
of the face formed by the different facial parts. We use
MediaPipe [28], to extract facial points located along the
midline, including the nose bridge, center of the forehead,
middle of the mouth, and chin. These landmarks serve as
reference points for determining a vertical partition.

We further extrapolate a curve from these small set of
landmark points in order to get the dividing curve of the
entire face. A simple piecewise linear fit between these land-
marks would result in sharp discontinuities at the forehead
and chin, leading to an unnatural segmentation. To ensure
a smooth, contour-following boundary, we instead employ
locally weighted regression (LOWESS) [29]. This method
assigns higher weights to nearby points, allowing the estimated
curve to smoothly adapt to the natural curvature of the face,
particularly at the forehead and chin. By doing so, we achieve
a more anatomically accurate partitioning of the face, which is
crucial for realistic synthesis in later stages. Figure 3 shows an
example of how the curve fitting looks like. We can observe
that it fits the landmark points well and extrapolates nicely

outside of the set of landmark points, following the contour
of the face.

B. Stitching the two half faces

A direct stitching of the two face images, i.e., one with a
neutral expression and the other with a different expression,
often results in visible discontinuities. These discontinuities
are particularly prominent in regions where the expressions do
not align well, such as when one image has an open mouth
while the other has a closed mouth.

To bridge the gap between the two expressions and create
a more seamless transition between the two sides, we employ
a progressive warping approach and generate intermediate
images by applying a mesh-based warping technique [13],
[30]. Figure 2 shows an overview of this process. This warping
gradually morphs the face with an arbitrary expression into a
neutral expression face while preserving structural coherence.

The warping process is guided by facial landmarks, ensur-
ing that intermediate images gradually aligns the landmarks
between the two face images, maintaining coherency between
the expressions and minimizing visible discontinuities. Specif-



LivePortrait OursPalsy Image

Fig. 8. Comparison between LivePortrait [14] and AFET in generating facial palsy expressions. We use the palsy image as the driving image for LivePortrait.
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Fig. 9. Our approach takes a (a) neutral face and a (b) expressive face as
inputs and stitches them together to create a facial palsy image. If we use
(c) LivePortrait to generate the intermediate images, we can observe visible
discontinuities. In contrast, (d) our morphing approach produces smoother
stitching of the two images with different facial expressions.

ically, we use the landmarks provided by Mediapipe [28] and
generate a Delaunay triangulation out of the landmark points.

Next, we create intermediate images by warping to an
interpolated landmark lM between the expression face and the
neutral face, as defined below

lM = αlE + (1− α)lN , (1)

where lM is the interpolated landmark, lE denotes the land-
mark of the expression face, lN denotes the landmark of
the neutral face, and α is a hyperparameter that controls
the interpolation weights. Figure 4 shows an example of an
intermediate image generated from the morphing process. The
value of α depends on the number of intermediate images we
want to generate, which we set to be equivalent to the number

of pixels between the center of the face and the edge of the
face.

Once the intermediate images are generated, we stitching
the two face halves using a column-wise replacement strategy.
Starting from the dividing curve, we iteratively replace vertical
columns of pixels from the neutral face with corresponding
columns from the intermediate images, as defined below using
a python-like indexing notation to denote the assignment of the
columns:

xN [:, d+ i] = xM
i [:, d+ i], (2)

where xN denotes the neutral face image, xM
i denotes the i-th

morphed image, d denotes the position of the dividing curve,
d+ i refers to an offset of i from the dividing curve d. Figure
2 visualizes this column-wise replacement strategy with color
strips denoting the dividing curve with offsets.

This progressive transition ensures that the blending appears
natural and smooth, preventing abrupt changes in texture
or shape. The final synthesized image retains the structural
integrity of the original face while realistically simulating the
asymmetry characteristic of facial palsy. Moreover, since the
synthesized image came directly from controlling facial land-
marks, we also get ground truth facial landmark annotations
for all the synthesized facial palsy images.

C. Generating facial expression image pairs

At this point, we have the method for stitching half of a
neutral face and half of an expression face. The last piece
of the puzzle is to generate an arbitrary expression face and
neutral face from an input face image in order to use as our
image pair for the face stitching. To do this, we utilize an
existing face re-enactment model namely LivePortrait [14],
which takes in an input identity image and a driving image.
LivePortrait will then generate an image that follows the
identity of the input image but with the expression of the
driving image, as shown in Figure 5. This allows us to generate
facial palsy image of any arbitrary face image.



IV. RESULTS

We evaluate our method using a combination of qualitative
visual inspection, comparison with an existing model, and
quantitative analyses. For identity images, we use the CelebA
dataset [31], which includes celebrity faces annotated with
40 binary attributes. The dataset offers substantial diversity in
gender, skin tone, hair color, and head pose, making it well-
suited for generating a variety of synthetic expressions. For
reference expressions, we use facial expression images from
the MEEI facial palsy dataset [21], which provides controlled
examples of typical facial palsy cases. We implement our
models with PyTorch framework and use an RTX 3090 GPU
for our experiments. The execution time for a 512×512 image
is around 3.4 seconds for blending + 6.2 seconds for facial
expression warping. We believe this is a reasonable run time
considering we only have to generate the dataset once.

A. Visual Inspection

Figure 7 presents a selection of generated facial palsy
expressions across a range of identities, including individuals
of different gender presentations and skin tones. We can
observe that our method effectively captures the characteristic
asymmetry of facial palsy, with realistic expression blending
and minimal visible discontinuities, illustrating the robustness
and generalization ability of AFET.

B. Comparison with an existing model

We compared our approach against LivePortrait [14], a
state-of-the-art facial reenactment model capable of generating
arbitrary expressions from a driving image. In this setup, we
used real facial palsy images as driving inputs to guide the
expression synthesis. Figure 8 shows the comparison results.
Because LivePortrait was trained exclusively on healthy, able-
bodied individuals, it consistently failed to replicate the asym-
metrical characteristics of facial palsy. Instead, it generated
symmetric, healthy-looking expressions, effectively overriding
the facial palsy features present in the driving image.

In contrast, AFET explicitly models asymmetry by blending
expressive and neutral facial halves. This strategy allows us to
explicitly introduce the asymmetric features typical of facial
palsy, while still utilizing the power of existing models to
generate healthy-looking facial expressions. As a result, our
generated expressions more faithfully reproduce the nuanced
presentation of facial palsy, including uneven muscle activation
and localized expression suppression, while still preserving
photorealism and identity.

We also experimented on using LivePortrait for generating
the intermediate images. As shown in Figure 9, it produces vis-
ible discontinuities. In contrast, our image morphing approach
generates smoother transitions with minimal discontinuities.

C. Quantitative Evaluation

To perform a quantitative evaluation of our method, we used
the MEEI dataset [21]. It comprises images of facial palsy
patients exhibiting neutral and enacted facial expressions. We
used the neutral face for one half of the face, and the enacted

TABLE I
RESULTS OF THE USER EVALUATION WITH 3 DIFFERENT RATERS.

Actual Labeled

Generated Real Generated Real R1 R2 R3

✓ ✓ 7 21 16
✓ ✓ 132 118 123

✓ ✓ 6 34 22
✓ ✓ 133 105 117

TABLE II
PER ACTION UNIT COMPARISONS AND OCCURRENCE BETWEEN

GENERATED AND ACTUAL FACIAL PALSY IMAGES.

AU Model Prec Recall F-score Real
occ.

Gen
Occ.

brow lowerer AFET 0.443 0.711 0.545 38 61
LivePort. 0.337 0.725 0.460 86

inner brow raiser AFET 0.782 0.812 0.797 128 133
LivePort. 0.717 0.662 0.688 120

cheek raiser AFET 0.721 0.388 0.504 80 43
LivePort. 0.475 0.354 0.406 59

lip corner puller AFET 0.930 0.606 0.733 109 71
LivePort. 0.711 0.622 0.663 97

upper lip raiser AFET 0.904 0.671 0.770 140 104
LivePort. 0.771 0.755 0.763 140

lip tightener AFET 0.571 0.412 0.479 68 49
LivePort. 0.542 0.471 0.504 59

chin raiser AFET 0.758 0.690 0.723 168 153
LivePort. 0.763 0.695 0.727 152

lid tightener AFET 0.970 0.785 0.868 205 166
LivePort. 0.909 0.820 0.862 186

lip corner depressor AFET 0.651 0.368 0.471 76 43
LivePort. 0.527 0.397 0.453 55

outer brow raiser AFET 0.731 0.731 0.731 67 67
LivePort. 0.606 0.642 0.623 71

dimpler AFET 0.438 0.206 0.280 34 16
LivePort. 0.500 0.243 0.327 18

lip pressor AFET 0.300 0.375 0.333 24 30
LivePort. 0.265 0.375 0.310 34

facial expression as the driving image for LivePortrait in
generating the other half of the face. This gives us comparable
pairs of actual and generated expression faces with facial palsy.

1) User Evaluation: We conducted a user evaluation study
with the task of detecting non-convincing facial palsy images.
Three participants were shown a mix of 139 real and 139
synthetic facial palsy images (278 in total) in random order
and asked to classify each as either real or generated. Table
I summarizes the results of the user evaluation study. A large
portion of the generated images were labeled as real, indicating
that participants had difficulty distinguishing between real
and synthetic palsy expressions. This supports the visual
plausibility of our method.

2) Unilateral AU: We used unilateral AU detection [32]
in combination with facetorch [33] to detect the AUs on
both sides of the actual and generated facial images. For
benchmarking purposes, we picked a subset of 12 AUs that
are commonly reported in other studies, namely, AU1: inner



brow raiser, AU2: outer brow raiser, AU4: brow lowerer, AU6:
cheek raiser, AU7: lid tightened, AU10: upper lip raiser, AU12:
lip corner puller, AU14: dimpler, AU15: lip corner depressor,
AU17: chin raiser, AU23: lip tightener, and AU24: lip pressor.
The mean number of AUs detected in the real facial palsy
images was 4.5 (SD = 2.1), while the generated facial palsy
images had a mean of 3.8 (SD = 1.8). Table II shows a more
detailed breakdown of the comparisons per action unit between
generated and real images. The results show that AFET can
mimic the AUs present in actual facial palsy images and
performs better than just using a facial reenactment baseline
(LivePortrait).

Since our generation process always uses a neutral face for
one side, we compute the Jaccard similarity separately: one
between the generated neutral side and the reference neutral
image, and one between the expressive side and the reference
expression. Our method achieves a 0.524 Jaccard similarity
score in this experimental setup. Using the expressive side
only, we achieve a Jaccard similarity score of 0.551.

3) Degree of Asymmetry: We also estimated the degree
of asymmetry by comparing the Jaccard similarity score
of the AUs from the left and right side of the face.
Specifically, we use compute it using the formula 1 −
Jaccard(AUleft, AUright). Our generated facial palsy dataset
has a 0.650 degree of asymmetry while the MEEI dataset
has 0.583 degree of asymmetry. The higher asymmetry in our
results is expected, given our design choice of using a fully
neutral face on one side.

V. DISCUSSION AND CONCLUSION

We proposed AFET - Asymmetric Facial Expression Trans-
fer; a novel approach for synthesizing facial imagery that
exhibits asymmetric facial expressions. It simulates realistic
facial asymmetry without requiring access to clinical datasets
or facial palsy patients. This enables a scalable generation of
diverse and privacy-preserving anatomically plausible asym-
metrical facial expressions.

Our visual inspections and qualitative results show that
AFET can produce realistic images that convincingly reflect
the key visual attributes of facial palsy. In contrast, LivePor-
trait could only generate healthy subjects due to its training
data. This indicates that explicit modeling of asymmetry is
necessary when generating synthetic data for underrepresented
facial morphologies.

The AU-based evaluation supports the visual quality of the
generated images. This slight difference between the mean
number of AUs detected in real facial images and the generated
ones suggests that while the synthetic expressions capture a
substantial portion of the muscular activity observed in real
cases, they may exhibit slightly less AU diversity or intensity
overall. This is expected, as the synthetic expressions are
derived from blending a neutral and expressive half, which
naturally limits the range of active AUs.

Our method achieves a Jaccard similarity score of 0.524
when comparing the generated expression halves against refer-
ence images, and 0.551 when focusing only on the expressive

side. Looking at per AU comparison, we achieve promising
precision on AUs that had large occurrences. These results
suggest that our synthesized expressions maintain meaning-
ful AU-level consistency. Moreover, the estimated degree of
asymmetry in our dataset (0.650) is comparable to—and
slightly higher than—that of the clinical MEEI dataset (0.583),
further validating the asymmetry modeling capabilities of our
approach. The higher asymmetry values are likely a result of
our method’s use of a fully neutral face on one side, which
maximizes contrast and may be beneficial for training FER
systems to recognize such conditions.

Our observation is that all synthesized images could be used
by the AU detection model, and that no errors were generated
simply because the generated image exhibits unexpected image
anomalies.

This study has potential theoretical and practical implica-
tions. From a theoretical perspective, our results show that
condition-specific constraints—such as asymmetric facial mus-
cle control—require dedicated modeling strategies. Moreover,
our method provides the means to systematically study under-
represented facial conditions.

AFET offers a scalable and privacy-preserving solution for
augmenting FER training datasets with realistic examples of
facial palsy. This is particularly useful in settings where ac-
quiring labeled clinical data is difficult due to privacy concerns
or data scarcity. Practitioners can use AFET to balance their
training datasets, improving model robustness to atypical facial
presentations in healthcare and assistive technologies. By
facilitating the synthetic generation of underrepresented facial
conditions, our method advances the development of more
inclusive and equitable FER systems, while contributing to
the responsible and ethical deployment of affective computing
technologies.

This study is not without limitations. The evaluation of our
method is limited to a qualitative examination of the realism
of the generated images, comparative visual inspection against
an off-the-shelf method, and the comparison of the generated
asymmetrical facial expressions against real images. For a
more comprehensive evaluation, in the future, we will train
a FER model using the data generated by our method, and
compare the model against the state-of-the-art.

ETHICAL IMPACT STATEMENT

We assessed the ethical implications of this work by align-
ing with established guidelines from the affective computing
community and through thematic analysis of recent literature
[34].

This paper addresses the representational bias in FER by
generating synthetic images of individuals with facial palsy.
Our work does not involve human subjects. We used a scien-
tific facial palsy image dataset, i.e., MEEI [21] and CelebA
dataset [31] to evaluate our method and illustrate the results.

While our primary objective is to improve fairness in FER
by increasing the representation of underrepresented condi-
tions, the generated data could be repurposed in inappropriate
ways. To mitigate this, we recommend that future deployments



of our method, and any data generated with it, be accompanied
by clear ethical use policies.

Our method explicitly aims to reduce bias by generating
data representing a marginalized and often overlooked group:
individuals with facial palsy. Since if our method is used solely
on existing facial image datasets, there is a risk to inherit the
demographic biases present in those datasets. The synthesized
images are not meant to be used for medical diagnosis or
clinical assessment. The scope of our claims is restricted
to their use in FER model training and evaluation under
research settings, particularly for improving model robustness
and fairness. We encourage future research and development
building upon this work to align with relevant regulatory
frameworks and ethical standards. In the spirit of open science,
we will release the code and generated dataset following the
completion of the peer review process.
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