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Abstract—Facial expressions are essential for non-verbal hu-
man communication as they convey behavioral intentions and
emotional states. While facial action units (AUs) can occur
bilaterally or unilaterally, the existing research in affective
computing predominantly concentrates on bilateral expressions,
largely due to the lack of datasets with unilateral AU labels.
In this study, we present a method for generating unilateral
AU labels and assess its efficacy against expert-labeled facial
images. Furthermore, we introduce a dedicated model trained on
the generated data and evaluate its performance across multiple
datasets. Our findings offer insights into feature extraction for
unilateral facial expression recognition. This research contributes
to advancing the understanding and recognition of nuanced facial
expressions, with potential applications in various domains such
as healthcare and human-computer interaction.

Index Terms—Affective computing, facial expression recogni-
tion, action units, unilateral facial expressions

I. INTRODUCTION

Facial expressions play a crucial role in non-verbal hu-
man communication by serving as a vehicle for conveying
behavioral intentions [1] and expressing emotional states [2].
Facial expressions comprise actions of one or more muscle
structures on the face, such as raising eyebrows and pulling
the corners of the lips. Various methods were proposed to
study facial expressions systematically. Facial Action Coding
System (FACS) [3], [4] stands as the predominant framework
for analyzing facial expressions. It provides a comprehensive
catalog of facial movements categorized into Action Units
(AU).

AUs are discrete components describing observable move-
ments of facial muscles that relate to both overt and subtle
expressions. Furthermore, AUs may exhibit bilateral symmetry
or unilateral manifestation [5] which adds complexity to facial
expression dynamics. The diverse configurations of AUs on
the face offer a broad spectrum of expressions, essential
for effective communication in social contexts. Unilateral
AUs provide signals distinct from their bilateral counterparts.
For instance, in Western societies, raising a single eyebrow
signifies curiosity, whereas the simultaneous elevation of both
eyebrows typically indicates surprise or fear. Similarly, a smile
characterized by raised cheeks commonly denotes happiness,
while the elevation of a single cheek may suggest a smirk.
Furthermore, individuals affected by conditions like facial

palsy often experience unilateral impairment which leaves
only one side of their face functional [6]. Consequently, the
non-verbal cues they can exhibit are restricted to unilateral
expressions.

Facial Expression Recognition (FER) [7] falls within the do-
main of affective computing, with the goal of identifying and
categorizing expressions exhibited on human faces. Despite
significant advancements in algorithms and the availability of
pre-trained models for automated AU detection, unilateral AU
detection remains largely unexplored within existing literature.
This gap is particularly striking considering the potential
significance of unilateral expressions in non-verbal human
communication.

This paper seeks to bridge this gap by introducing a novel
model for unilateral AU detection. Several challenges need
to be addressed to achieve this goal. First, there is a notable
scarcity of labeled data specifically focusing on unilateral AUs
[8], which presents an obstacle in training and evaluating
such models. Secondly, the algorithms and feature extraction
methods commonly employed for facial analysis are not in-
herently designed to handle unilateral facial expressions which
necessitates new approaches to representation and analysis.

Therefore, our research questions are as follows.

• How can facial image data annotated with unilateral AUs
be effectively generated?

• What novel methods can be employed to represent uni-
lateral facial features for the identification of unilateral
AUs?

This study aims to contribute to the advancement of facial
expression recognition by offering insights into the detection
and interpretation of unilateral facial movements, thus, facili-
tating a deeper understanding of non-verbal human communi-
cation. Our specific proposed contributions include a method
for generating unilateral AU labels on facial imagery, a model
for detecting unilateral facial expressions, and insights into
the prevalence and characteristics of unilateral AUs. These
contributions hold potential applications in various domains,
such as healthcare for diagnosing and treating facial palsy [8],
training actors in facial expressiveness [9], and developing vir-
tual agents with more authentic and nuanced facial expressions
[10], [11].
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Fig. 1. Given a face image, we derive unilateral AUs by splitting the face in half and mirroring them. This produces two full face images coming from the
left mirrored and right mirrored face. We can then use existing full face models to obtain the facial AUs of each side.

The subsequent sections of this paper are structured as
follows. Section II comprises the background and related work
on unilateral facial expressions and computational approaches
to their detection. Section III covers the details of our unilateral
AU label generation method. Section IV presents our approach
to unilateral AU detection modeling. Section V discloses
the results. Finally, Section VI discusses the theoretical and
practical implications of our contributions, and concludes the
paper.

II. BACKGROUND AND RELATED WORK

A. Unilateral Facial Expressions

Facial actions are considered bilateral when muscle activity
associated with a specific AU is observable on both sides of
the face. Conversely, a unilateral action occurs when evidence
of an AU is present on one side of the face but absent on the
other side [5]. While most AUs can manifest bilaterally, by
definition, some AUs can only appear unilaterally. For exam-
ple, AU46 denotes a wink, a movement inherently performed
with only one eye. Furthermore, the unilateral manifestation
of an expression often conveys a distinct meaning compared
to its bilateral counterpart. Additionally, the display of subtle
facial movements unilaterally can convey important informa-
tion about an individual’s disposition [12]. For instance, the
so-called dominant smile is characterized by the asymmetrical
manifestation of AU12 - Lip Corner Puller [13].

Studies examining unilateral facial expressions generally
fall into two categories. The first group focuses on neurological
or facial muscle control disorders, such as facial palsy, where
one side of the face experiences a loss of voluntary muscle
control. Diagnosis and grading of facial palsy typically involve

assessing facial symmetry and comparing the range of motion
of both sides of the face [6].

The systematic review of physical rehabilitation of facial
palsy [6] covers examples of techniques based on the func-
tional symmetry of facial muscles. For instance, recent studies
in automated palsy grading include the comparison of facial
function using FER [14], [15].

The second group of studies in the literature examines
variations in emotional expressiveness between the two sides
of the face [16], [17], as well as the cultural significance
of specific unilateral facial expressions [18]. These studies
highlight the prevalence of unilateral AUs as a distinct area of
research alongside bilateral AUs, indicating a need for further
research to develop methods that enable the examination of
unilateral facial expressions.

B. Related Work on Unilateral AU Detection

Despite the significance of unilateral AUs in conveying
nuanced non-verbal cues, they are rarely labeled in com-
monly available datasets. For instance, the Affectiva-MIT
Facial Expression Dataset [19] includes unilateral labels for
a limited subset of AUs, such as AU12 (Lip Corner Puller)
and AU14 (Dimpler). However, training supervised unilateral
AU models requires more extensive labeled datasets, which
are challenging and expensive to manually curate. To alleviate
this issue, researchers have explored unconventional methods
for AU labeling. One such approach is demonstrated in FaraPy
[8], an augmented reality system designed for mirror therapy
in facial palsy treatment. This method involves comparing the
intensity of AUs on both sides of the face. To estimate the
intensity of unilateral AUs, FaraPy utilizes intermediate visu-
alizations from another pre-trained model [20]. The authors
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Fig. 2. Our unilateral AU detector first extracts facial features from either the full face (top) or the half face (bottom) and trains a classifier to predict left
and right facial AUs.

assess performance by benchmarking against the outcomes of
the same pre-trained model. In another approach, researchers
aiming to develop avatars with dynamic facial expressions
have utilized vertically split facial landmarks as features for
unilateral AU classification [11]. These related works highlight
the need for a robust and dedicated unilateral AU detection
model.

III. DERIVING UNILATERAL AU LABELS

Current datasets commonly used in FER predominantly
include bilateral AUs, and they rarely indicate laterality of
the expression. Therefore, to effectively train and evaluate our
model, we derived unilateral AU labels by generating mirrored
versions of each side of the face and automatically labeling
AUs on the mirrored images. This method ensures that the
presence or absence of AUs is solely attributed to one side of
the face. An overview of our approach is depicted in Figure
1, comprising the following steps.

Initially, we vertically split the face into two halves, result-
ing in separate images representing the right and left sides
of the face (see Section III-A). Subsequently, we explore two
approaches to reconstructing the complete facial images: either
by mirroring the entire head (see Section III-B1) or mirroring
only the facial regions (see Section III-B2). Finally, we employ
a facial AU detector on each mirrored side (see Section III-C).

A. Vertical split

To determine the splitting point of the face, we initially
detect facial landmarks using MediaPipe [21]. This results
in a face mesh comprising 478 points, representing facial
landmarks in detail such as those along the eyes, nose, mouth,
eyebrows, and jawline (see Figure 1, left). Utilizing these facial

landmarks, we normalize the face by performing rotations
to straighten and center it within the image. To establish
the vertical separation line, we identify landmarks keypoints
corresponding to the forehead, center of the nose, middle of
the lips, and middle of the chin. Subsequently, we employ a
linear regression model to fit a line through these points.

B. Mirroring

The objective of mirroring is to synthesize new complete
facial images from the split halves so that the synthesized
facial image can be processed by existing AU detection
models. Two alternative design choices are considered for
mirroring: mirroring the entire head or mirroring only the face.

1) Head mirroring: Mirroring the entire head results in a
new facial image with symmetrical details. While this ensures
that all facial details and AUs originate from one side of the
face, it may alter aspects such as hairstyle and face shape,
particularly if they were initially asymmetrical.

To perform head mirroring, the face is divided into left
and right halves along the separating line. These halves are
then horizontally flipped and merged with the original halves
along the separating line (see Figure 1, bottom). As a result,
two complete facial images are generated comprising mirrored
halves as shown in Figure 1 (bottom).

2) Face mirroring: Mirroring only the face aims to preserve
details of the original image such as hairstyle and face shape.

From the facial landmarks, the region defined by the contour
around landmark keypoints traversing the eyebrows, cheeks,
lips, chin, and nose is carved out. The left and right sides
of the face region are then split and horizontally flipped. To
mitigate sharp seams or discontinuities around the edge of the



TABLE I
PERFORMANCE OF UNILATERAL AUS DERIVED FROM MIRRORING THE ENTIRE HEAD, EVALUATED ON THE EXPERT ANNOTATED DATA. THE NOTATION

( L) DENOTES LEFT, AND ( R) DENOTES RIGHT.

Metric Mean †AU02 L AU04 L AU10 L AU15 L AU25 L AU26 L AU28 L AU43 L

precision 0.76 0.00 1.00 0.96 1.00 0.89 0.33 1.00 1.00
recall 0.92 0.00 1.00 0.85 0.71 0.96 1.00 1.00 1.00

f-score 0.75 0.00 1.00 0.90 0.83 0.92 0.50 1.00 1.00
accuracy 0.97 0.97 1.00 0.92 0.97 0.94 0.94 1.00 1.00

AU02 R AU04 R AU10 R AU15 R AU25 R AU26 R AU28 R AU43 R

0.83 0.71 1.00 0.75 0.84 0.60 0.20 1.00
1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00
0.91 0.83 0.98 0.86 0.91 0.75 0.33 1.00
0.98 0.97 0.98 0.98 0.92 0.94 0.94 1.00

†Note that for the small annotated samples, there were no instances of AU02 L, hence precision, recall, and f-score are 0.

TABLE II
PERFORMANCE OF UNILATERAL ACTION AUS DERIVED FROM MIRRORING THE ONLY THE FACE, EVALUATED ON THE EXPERT ANNOTATED DATA. THE

NOTATION ( L) DENOTES LEFT, AND ( R) DENOTES RIGHT.

Metric Mean †AU02 L AU04 L AU10 L AU15 L AU25 L AU26 L AU28 L AU43 L

precision 0.38 0.00 0.75 0.78 0.50 0.96 0.22 0.00 1.00
recall 0.57 0.00 1.00 0.81 0.29 0.92 1.00 0.00 1.00

f-score 0.38 0.00 0.86 0.79 0.36 0.94 0.36 0.00 1.00
accuracy 0.93 0.94 0.98 0.83 0.89 0.95 0.89 0.97 1.00

AU02 R AU04 R AU10 R AU15 R AU25 R AU26 R AU28 R AU43 R

0.50 0.67 0.88 0.33 0.83 0.30 0.00 0.67
0.40 0.40 0.85 0.33 0.96 0.50 0.00 1.00
0.44 0.50 0.87 0.33 0.89 0.38 0.00 0.80
0.92 0.94 0.89 0.94 0.91 0.84 0.95 0.98

†Note that for the small annotated samples, there were no instances of AU02 L, hence precision, recall, and f-score are 0.

copied facial region, Gaussian blurring is applied (see Figure
1, top).

C. AU Prediction

As a result of the mirroring step, two facial images are
obtained: one mirrored from the left half of the face and
another mirrored from the right half. At this point, a standard
facial AU detection model can be used to label the left and
right facial AU. For our experimental setup, we employ the
open-source library PyFeat [22].

IV. UNILATERAL AU DETECTOR

While the mirroring approach introduced in the previous
section is effective for generating unilateral AU labels, it
operates under the assumption of symmetric and front-facing
images. However, this assumption may restrict its utility,
particularly for individuals with asymmetrical features or
conditions like facial palsy. To address this limitation, we have
developed a unilateral AU detector that analyzes the facial
structure of the original image without resorting to mirroring.
This dedicated model is trained to predict AUs from both the
left and right sides of the face, which enhances its applicability.
Moreover, by eliminating the need for mirroring, our dedicated
model reduces the unintentional error cascades stemming from
mirrored faces. An overview of our unilateral AU detector
is presented in Figure 2, and the steps are described in this
section.

A. Facial Feature Extraction

To reduce the influence of background noise in the image,
we initially extract the head region by computing the convex
hull of the facial landmark keypoints. Following the methodol-
ogy proposed by Cheong et al. [22], we then extract Histogram
of Oriented Gradients (HOG) [23] features.

This process comprises dividing the image into 8×8 blocks
and computing the edge gradients in both the x-axis and y-axis
directions within these blocks. Subsequently, the orientations
of the edge gradients are computed, and HOG is generated
with 8 bins (representing 8 different orientations). From the
edge gradients, we can compute their orientations. Finally, the
histograms of each block are concatenated to form a feature
vector of the input facial image.

We explore two alternative feature map representations:

• Full face features: In this representation, we compute the
HOG across the entire face (see Figure 2, (top)).

• Half face features: This alternative splits the face in half
and computes the HOG for each half of the face (see
Figure 2, (bottom)).

Both of these feature representations yield a large feature
vector. To compress this representation, we employ a standard
Principal Component Analysis (PCA) and retain the number
of components that capture 95% of the variance.
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Fig. 3. Example results of both face mirroring and head mirroring. Face mirroring preserves the background, face shape, and hair style, while head mirroring
simply replicates everything from one side.

TABLE III
PERFORMANCE OF OUR UNILATERAL AU DETECTOR MODEL, EVALUATED ON THE EXPERT ANNOTATED DATA. PERFORMANCE IS MEASURED IN TERMS

OF F-SCORE. THE NOTATION ( L) DENOTES LEFT, AND ( R) DENOTES RIGHT.

Model Features Mean †AU02 L AU04 L AU10 L AU15 L AU25 L AU26 L AU28 L AU43 L

SVM Full face 0.45 0.00 0.55 0.66 0.36 0.86 0.25 0.22 0.55
XGB Full face 0.41 0.00 0.40 0.62 0.35 0.84 0.13 0.15 0.53
SVM Half faces 0.49 0.00 0.50 0.74 0.52 0.88 0.25 0.21 0.67
XGB Half faces 0.42 0.00 0.33 0.68 0.30 0.82 0.22 0.08 0.62

AU02 R AU04 R AU10 R AU15 R AU25 R AU26 R AU28 R AU43 R

0.42 0.44 0.86 0.29 0.87 0.42 0.08 0.33
0.47 0.40 0.77 0.26 0.89 0.40 0.07 0.31
0.50 0.40 0.89 0.32 0.91 0.45 0.07 0.50
0.50 0.33 0.83 0.29 0.94 0.37 0.07 0.36

†Note that for the small annotated samples, there were no instances of AU02 L, hence precision, recall, and f-score are 0.

B. AU Classifier Training

Lastly, we train a classifier on the facial features to predict
left and right AUs. We investigate two widely used algorithms
in the literature: Support Vector Machines (SVM) [24] and
XGBoost [25].

C. Dataset and Ground Truth

EmotioNet Dataset: For training, we mainly utilized the
EmotioNet [26] dataset, which includes facial images collected
from the internet through querying emotional keywords. We
performed filtering based on the head’s pose, retaining images
with an absolute value of the roll, pitch, and yaw to be less
than five. In doing so, we ensured that the facial images
were front-facing, i.e., directly facing the camera with both
sides of the face visible. Subsequently, mirroring was applied
as described in the previous section, and both frontal and
mirrored images were processed using PyFeat, resulting in
images labeled with 20 AUs. Images that failed processing due
to obstructions of the face, incomplete frames, or anomalies
were removed, leaving 5,221 original frontal images. Along

with their mirrored variants, the number of images reached
26,106. Out of 20 AUs provided by PyFeat, we selected a
subset of eight AUs (i.e., AU02, AU04, AU10, AU15, AU25,
AU26, AU28, and AU43) that appeared in at least ten percent
of the cases unilaterally.

For evaluation, we curated a sample of 66 images. Half of
these images were randomly selected from a subset displaying
unilateral facial expressions, while the other half was randomly
chosen from the remaining images. Each selected sample un-
derwent manual annotation by two researchers independently,
who indicated unilateral AU labels for the left and right sides,
and bilateral AU labels for the complete face separately. Both
annotators studied the FACS guide prior to the annotation
task and agreed on the annotation procedure. This procedure
involved annotators identifying the presence or absence of
specific AUs on either the left or right side of the face. The
ground truth was established by taking the intersection of the
sets of AUs for the left and right sides as determined by both
annotators. To assess the inter-rater agreement, we utilized
Cohen’s Kappa [27]. The agreement on the unilateral labels



TABLE IV
PERFORMANCE OF OUR UNILATERAL AU DETECTOR MODEL, EVALUATED ON THE FACIAL PALSY DATASET. PERFORMANCE IS MEASURED IN TERMS OF

F-SCORE. THE NOTATION ( L) DENOTES LEFT, AND ( R) DENOTES RIGHT.

Model Features Mean AU02 L AU04 L AU10 L AU15 L AU25 L AU26 L AU28 L AU43 L

SVM Full face 0.68 0.70 0.59 0.80 0.61 0.84 0.62 0.43 0.75
XGB Full face 0.64 0.70 0.54 0.77 0.57 0.82 0.58 0.35 0.72
SVM Half face 0.69 0.73 0.63 0.79 0.64 0.84 0.68 0.47 0.78
XGB Half face 0.65 0.71 0.56 0.73 0.59 0.82 0.61 0.37 0.74

AU02 R AU04 R AU10 R AU15 R AU25 R AU26 R AU28 R AU43 R

0.68 0.70 0.81 0.65 0.82 0.70 0.38 0.80
0.63 0.62 0.77 0.60 0.79 0.66 0.39 0.79
0.68 0.68 0.82 0.65 0.82 0.70 0.39 0.76
0.66 0.61 0.82 0.61 0.80 0.64 0.36 0.80

TABLE V
5-FOLD CROSS-VALIDATION PERFORMANCE OF OUR UNILATERAL AU DETECTOR MODEL, EVALUATED ON THE EMOTIONET DATASET. PERFORMANCE IS

MEASURED IN TERMS OF F-SCORE. THE NOTATION ( L) DENOTES LEFT, AND ( R) DENOTES RIGHT.

Model Feature Mean AU02 L AU04 L AU10 L AU15 L AU25 L AU26 L AU28 L AU43 L

SVM Full face 0.81 0.82 0.80 0.85 0.75 0.88 0.84 0.72 0.83
XGB Full face 0.79 0.80 0.77 0.84 0.69 0.89 0.82 0.68 0.84
SVM Half face 0.81 0.82 0.80 0.85 0.75 0.89 0.84 0.72 0.85
XGB Half face 0.80 0.81 0.78 0.85 0.70 0.89 0.81 0.70 0.85

AU02 R AU04 R AU10 R AU15 R AU25 R AU26 R AU28 R AU43 R

0.82 0.80 0.86 0.75 0.87 0.81 0.73 0.85
0.81 0.76 0.85 0.71 0.86 0.79 0.69 0.87
0.82 0.81 0.86 0.75 0.87 0.81 0.72 0.85
0.81 0.78 0.85 0.72 0.87 0.79 0.70 0.87

was K=0.8 for the right side, K=0.74 for the left side, and
K=0.64 for the entire face, indicating substantial agreement
strength [28]. Subsequently, we utilized the intersection of the
AU labels provided by the annotators as the ground truth for
further analysis.

Facial Palsy Datasets: In addition to EmotioNet dataset,
we also aimed to evaluate the performance of our model on
images depicting edge cases of unilateral facial expressions. To
achieve this, we curated a dataset as the combination of three
different data sources featuring images of facial palsy patients:
(1) MEEI Standard dataset [29], (2) Neuroface Toronto [30],
and (3) YouTube Facial Palsy dataset [31]. Both MEEI Stan-
dard and Neuroface Toronto datasets were originally collected
under controlled experimental setting, while the YouTube
Facial Palsy dataset was obtained from YouTube videos.

Following the filtering step for the frontal images, a total
of 408 images remained for evaluation purposes. To obtain
unilateral AU labels, we used the same mirroring procedure
as previously described. We opted only for head mirroring due
to its superior performance in our previous observations.

V. RESULTS

A. Qualitative Evaluation of the Mirroring

Visual examples of the mirroring results for both face mir-
roring and head mirroring are presented in Figure 3. Overall,
both head and face mirroring techniques produce coherent and
plausible facial images, which supports the validity of this
approach. While there are some noticeable artifacts, such as

inconsistent lighting in face mirroring and changes in facial
shape in head mirroring, our observations indicate that these
artifacts do not significantly degrade the recognition of AUs.

B. Comparison between Face and Head Mirroring

We assess the efficacy of our two strategies for deriving uni-
lateral AUs by comparing their outputs with expert-annotated
samples (as detailed in Section IV-C). Table I presents the
performance of mirroring the head, while Table II displays
the performance of mirroring the face. Evidently, mirroring
the entire head yields significantly better results than mirroring
only the face. This observation suggests that features near the
contour of the head and face, such as the jawline, cheeks, and
forehead, play crucial roles in inferring AUs.

C. Comparison between full face and half face features

Next, we assess two alternative strategies for extracting
facial features when training a unilateral AU detector. Table
III presents the f-score on the expert annotated data that shows
the performance of both full-face and half-face features. We
observe that half-face features outperform full-face features.
This finding is consistent across Table IV and Table V as
well.

This is surprising since the full-face features are expected
to contain the information encoded in the half-face features. A
potential explanation is that the improvements may be due to a
clearer delineation of the separation between the left and right
sides in the half faces compared to the full faces. In the latter,



TABLE VI
COMPARISON BETWEEN AUS IDENTIFIED ON THE ORIGINAL IMAGES AND THE UNIFIED SET OF UNILATERAL AUS DETECTED ON BOTH SIDES USING

HEAD MIRRORING.

Metric Mean AU02 AU04 AU10 AU15 AU25 AU26 AU28 AU43

precision 0.93 0.98 0.92 0.87 0.93 0.90 0.92 0.94 0.97
recall 0.90 0.96 0.89 0.85 0.89 0.88 0.88 0.91 0.96

f-score 0.91 0.97 0.90 0.85 0.91 0.89 0.89 0.92 0.96
accuracy 0.90 0.96 0.89 0.85 0.89 0.88 0.88 0.91 0.96

the model needs to allocate additional capacity to determine
the point of laterality change. Moreover, the model does not
have to filter out details of the other side for the half faces,
potentially reducing the side effects of spurious correlations.

D. Comparison between SVM and XGBoost

An examination of Table III, Table IV, and Table V
reveals that SVM consistently outperforms XGBoost. This
discrepancy potentially arises from XGBoost’s high sensitivity
to imbalanced data, which is the case in our experiments.
In contrast, SVM exhibits greater robustness to imbalanced
datasets since it focuses solely on support vectors around the
decision boundary.

E. Performance on facial palsy images

The results of the evaluation of our model on the facial
palsy datasets are presented in Table IV. The best-performing
model achieves an f-score of around 0.69. Considering that
our proxy labels derived from the mirroring strategy align with
human annotations at around 0.75 (as shown in Table V), and
our model achieves an f-score of approximately 0.80 from
the 5-fold cross-validations, the performance of the model on
the facial palsy datasets is in line with expectations. This
alignment is reasonable given the cascade of errors, which
approximately yields 0.75× 0.8 = 0.60.

F. Estimated degradation of head mirroring

Ideally, an AU present on the original facial image should
also appear on one or both of the mirrored facial halves.
Moreover, mirroring should not introduce any AUs that were
absent on the original facial image. To assess the impact of
head mirroring on AU detection, we compared the original set
of AUs per image with the unified list of AUs identified on
the left and right mirrored versions, and reported the results
in Table VI. The average F1-Score for the eight AUs is 0.91,
indicating the degree to which mirroring affects the accuracy
of AU identification.

VI. DISCUSSION AND CONCLUSION

In this paper, we proposed a novel method for generating
AU labels independently for each side of facial images,
along with a dedicated model for detecting unilateral facial
expressions. We explored two approaches for generating uni-
lateral AU labels: mirroring both sides of the entire head
and mirroring only the face. Our findings indicate that both
approaches are feasible, with head mirroring yielding superior
results. Using the generated AU labels, we trained a dedicated

unilateral AU detection model, which we assessed by com-
paring against expert-annotated sample data and applying it
to multiple datasets featuring images of patients with facial
palsy.

This study has potential implications for research and prac-
tical applications. Researchers can employ our AU label gener-
ation method based on lateral mirroring to automatically pro-
duce unilateral AU labels, addressing an important gap in the
literature. Moreover, our findings can inform the development
of advanced systems for nuanced facial expression recognition.
The dedicated unilateral AU detection model offers a valuable
tool for gaining insights into the manifestation of nuanced
facial expressions in humans.

In practice, our unilateral AU detection model can be
utilized in the healthcare domain for diagnosing and treating
disorders that lead to asymmetrical facial impairments. Addi-
tionally, it can aid in training actors to enhance their facial
expressiveness and in designing virtual agents with realistic
and nuanced facial expressions.

However, the primary limitation of this study lies in the size
and diversity of the human-annotated data used for evaluation.
To address this, our next research endeavor involves manually
annotating a larger and more diverse dataset. Furthermore, the
inability to compare our model against the state-of-the-art is
due to the scarcity of available unilateral AU models in ex-
isting literature. This highlights an area for future exploration
and benchmarking.

ETHICAL IMPACT STATEMENT

We evaluated the potential ethical implications of this study
in accordance with guidelines established by the affective
computing community [32] and through thematic analysis of
previous literature [33].

In this research, we utilized publicly available datasets
and conducted a thorough examination to identify potential
biases and contextual limitations. However, it is important to
acknowledge that the generalizability of our model may be
compromised by the limited number and diversity of datasets
used.

Facial expressions of emotions are inherently influenced by
culture and context, with variations even within individuals.
Therefore, Facial Expression Recognition (FER) studies must
be diligent in interpreting expressions accurately. Our study
makes an important contribution by facilitating nuanced facial
expression analysis, thereby offering improved opportunities



to account for contextual, cultural, and individual variability
in expressions.

Our contributions extend beyond specific domains and hold
potential across various applications. We recommend that
future research and development endeavors that extend our
study, particularly those involving sensitive applications such
as emotion recognition in educational institutions, workplaces,
and law enforcement, comply with the regulatory and ethical
guidelines. In adherence to open science principles, the code
used for data preparation and analysis is publicly available
[34].
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