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Abstract—Emotions manifest in various aspects of human
speech. While the tonality of the speech is a crucial indicator
of emotions, other aspects such as word selection, pronunciation,
and other paralinguistic features also provide valuable insights.
Some of these aspects are considered universal, others are
influenced by cultural and personal aspects, with gender being
one of the most significant factors affecting emotional expressions.
In this study, we aimed at investigating the effect of gender on
emotional descriptors in speech. Specifically, we used intelligible
paralinguistic speech features in Speech Emotion Recognition
and employed Shapley values to measure the effect of gender on
speech features. Furthermore, we empirically evaluated whether
a reduced set of informative features could provide sufficient
information for emotion recognition. Additionally, we investigated
how gender influences auditory expressions of emotions.

Our experiments show that besides the physical impact on fun-
damental speech frequencies, gender also affects how emotional
phrases are spoken, and how prosody and phonology change.
In addition to that, reducing the input size using the feature
informativeness does not have a significant effect on the model
accuracy whereas it shrinks the input size drastically by 98% on
average. Finally, our comparative experiments on genders show
that some speech features are more informative for capturing
particular emotions exhibited by different genders. Therefore, we
report that with a multi-layer feature set that consists of obscure
and interpretable paralinguistic features, a novel data fusion
approach could yield an explainable speech emotion recognition
model. Furthermore, it is possible to reduce the input size and
computational requirements by implementing feature reduction
and gender information for speech emotion recognition tasks.

Index Terms—speech emotion recognition, affective computing,
explainable machine learning, feature selection

I. INTRODUCTION

Emotions are an essential part of human communication.
They influence decision-making and social interactions and
even serve as a mechanism for survival. Humans have a
natural way of displaying and perceiving emotions. How-
ever, experts have conflicting views on whether emotional
expressions are universal or not [1]. This makes affective
computing tasks challenging for researchers and practitioners.
Contemporary affective computing applications use auditory,
visual, physiological, biological, and behavioural modalities.
Speech emotion recognition (SER) is a sub-field of affective

computing that aims at inferring emotions reflected in speech.
Speech is a fundamental form of human communication, and
emotions play a crucial role in conveying meaning through
speech. A speech is characterized by linguistic and paralin-
guistic features. In a speech, linguistic features determine what
message is delivered, while paralinguistic features define how
that message is conveyed. Some paralinguistic features are
intelligible because they represent concepts that are easily
understood such as the duration of pauses in speech. Others
are obscure as they represent statistical characteristics of
underlying audio signals such as zero-crossing rate, thus, they
are not outright intelligible.

The core assumption of SER is that the affective states of
an individual are reflected in the speech features [2].These
features are dependent on the speaker’s individual physical,
cultural [3], lingual [4], and acoustic [5] characteristics. There-
fore, features extracted from the speech can be used for
inferring the affective state of the speaker.

General approaches that tackle SER use machine learning.
In recent years, advances in machine learning and audio signal
processing have enabled the development of SER systems
with increasing performance. Typical approaches incorporate
obscure paralinguistic features that are extracted similarly
for any kind of audio data [6]. There are also studies in
the literature that employ intelligible paralinguistic [7] and
linguistic speech features [8].

SER performance might be improved when speaker char-
acteristics such as gender are taken into consideration [9].
Speech features have a varying degree of informativeness
for certain emotion classes. A systematic analysis of speech
features, their relationship with the speaker’s gender, and their
impact on conveyed emotions remain understudied. This paper
is purposed to address this gap by providing an analysis
of gender effects on paralinguistic speech features and their
role in the model explanation while investigating the ways to
reduce the input data size. We aim to add to the discussion
on the summarisation of emotional activity along with model
explainability and efficiency.

In this study, we address the following research questions:
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RQ1. Which speech features are more informative for
different speaker genders and emotion classes in SER?

RQ2. Can a subset of speech features that are selected by
their informativeness be as useful as the full feature set in
SER?

RQ3. Which speech features are more prone/robust to
gender bias in SER?

The rest of the paper is organized as follows. Section II
lays down the background information that is referred to
in this paper, section III reviews the literature on speech
feature analysis associated with emotion labels and speech
characteristics. Section IV describes our research method.
Section V reports the results of our study. In Section VI, we
discuss our findings. Finally, in Section VII, we conclude the
paper.

II. BACKGROUND

Audio is the digitally recorded representation of sound
waves of particle vibrations. Speech sound is generated by
vibrating the air using the vocal folds (cords) in the larynx
(also known as the voice box) and shaping the vibrated air
using articulators such as the pharynx, and nasal and oral
organs [10]. Vocal cords produce irregular sine waves that
congregate on top of each other constituting raw speech. To
be able to further understand the speech, features of different
speech aspects have been defined [11] [12] [13](Figure 1) .
A variety of feature sets and signal-processing methods have
been developed [14] to extract meaningful information from
speech. These methods aim at performing on general audio
data and they usually employ statistical calculations, preceding
signal processing practices [15], acoustic feature extraction
[16], and deep learning techniques [17]. When it comes to
speaking, the human brain processes other cues along with
the sound and interprets them along with paralinguistic speech
features that imply how the speech is done. Pronunciation of
phonemes [18], speed of speech [19], pauses [20], and the
complexity of the speech [21] influence how the speaker is
emotionally perceived by the listener. The way the speech is
conducted should be taken as important as the content of the
speech for perceiving the emotions in a human-like fashion.

A. Explanations of Features

For extracting intelligible paralinguistic speech features
from audio data, we used DisVoice [12] paralinguistic speech
feature extraction library. Specifically, Disvoice’s static feature
extraction methods from Glottal [22], Phonological [23] and
Prosodic [24] categories were used for this study (Figure 2).
The explanations of the descriptors and features are as follows.

• Glottal Features: Glottal speech features are computed
from sustained vowels and continuous speech.

– Glottal Closure Instant (GCI): Defines the moment
where the vocal tract system is significantly excited
during the production of the speech.

– Opening Quotient (OQ): The ratio of time that vocal
cords are open within a glottal cycle. The Quasi

Fig. 1: Lingual and paralingual speech features

Opening Quotient (QOQ) is a regularly used deriva-
tive of which is based on the amplitude of the glottal
pulse [25].

– Normalized Amplitude Quotient (NAQ): A time-
domain measure derivative of the glottal pulses.
Correlated to the energy and defines how ’pressured’
a vowel or phoneme is voiced [26].

– Difference Between the First Two Harmonics
(H1H2): Measurements of difference in glottal har-
monic amplitude. This is related to the use of differ-
ent pitches and harmonics in speech. This feature is
used in studies on voice and language quality.

– Harmonic Richness Factor (HRF): Computed via the
ratio of the sum of glottal harmonics amplitude and
fundamental frequency amplitude. This feature is
usually used in studies on vocal quality and speaking
disorders. HRF in modal speech is higher than HRF
in stressed speech.

• Phonological Features: There are 18 log-likelihood ratio
descriptors computed, corresponding to the phonological
classes from the Phonet toolkit [23]. These features
present how single phonemes were pronounced Table I.

• Prosody Features: Prosodic features are computed from
continuous speech based on duration, fundamental fre-
quency (F0), and energy. Average (avg), min, max, tilt,
contour, skewness (skw), mean-square-error(mse), and,
kurtosis (kurt) are computed for F0 and energy of voiced
and unvoiced segments of the audio. The oscillation state
of the vocal cords determines if the phoneme is voiced or
unvoiced [27]. Unvoiced segments are prosodical phases
where the sound is still produced in the mouth but not
using the lung-full breath. The energy of the first unvoiced



vocalic /a/, /e/, /i/, /o/, /u/
consonantal /b/, /tS/, /d/, /f/, /g/, /x/, /k/, /l/, /λ/, /m/, /n/, /p/, /r/, /r/, /s/, /t/
back /a/, /o/, /u/
anterior /e/, /i/
open /a/, /e/, /o/
close /i/, /u/
nasal /m/, /n/
stop /p/, /b/, /t/, /k/, /g/, /tS/, /d/
continuant /f/, /b/, /tS/, /d/, /s/, /g/, /λ/, /x/
lateral /l/
flap /r/
trill /r/
voiced /a/, /e/, /i/, /o/, /u/, /b/, /d/, /l/, /m/, /n/, /r/, /g/, /λ/
strident /f/, /s/, /tS/
labial /m/, /p/, /b/, /f/
dental /t/, /d/
velar /k/, /g/, /x/
pause /sil/

TABLE I: Phonological Classes in Phonet Toolkit

segments shows how ’strong’ the first voiced phoneme is
ended. Tilt is calculated from a linear estimation of F0
in a segment.

Fig. 2: Diagram of Extracted Features1

III. RELATED WORK

Voice quality and prosody features were reviewed in differ-
ent emotional speech conditions [28]. The authors concluded
that speech features indicate the emotional state of the speaker
but related features should be extracted and selected carefully.
In another study with multiple corpora [29], researchers stud-
ied acoustic features in detail and found that the shape of the
pitch is not as emotionally informative as the contour of the
pitch in speech. They concluded that although these features
are not the most informative among obscure paralinguistic
features, they are more emotionally prominent. Despite the
initial studies using similar datasets and obscure paralinguistic
features that were extracted to pursue speech analysis, there
have been recent studies with varying extensions, too. CK et al.
[30] investigated SER using obscure bispectral features from
speech and glottal waveforms on different classifiers to analyse
the influence of different feature sets on identifying levels of
stress. Their research showed that although bispectral features
are more convenient for certain stress levels, employing also
glottal features increases the performance of most feature sets.

1Visuals from the DisVoice website: https://disvoice.readthedocs.io/

Input dimensionality and the speech duration for an efficient
SER were examined [31]. The authors used only two sets
of obscure paralinguistic features, namely Subharmonic-to-
Harmonic Ratio (SHR) and Wavelet Packet Transform to
compose a feature vector of size 384 for each speech utterance.
They were able to reduce the input without compromising
accuracy and reported that it is possible to recognize emotions
from a one-second-long speech by using sufficient feature sets.

Understanding the influence of individual features is a
cumbersome job since the number of available obscure paralin-
guistic features goes up to over 1500 including the low-level
descriptors for some feature extraction libraries [32]. Further
elements of SER on the obscure paralinguistic feature level
include signal processing steps, normalization, the level of
segmentation and windowing, decoding, and implementation
of deep networks for AI-driven feature extraction.

IV. RESEARCH METHOD

In this study, we used Berlin Database of Emotional Speech
(EmoDB) which is a public, acted speech corpus in which
10 actors speak out 10 sentences in seven emotional classes
(i.e., happy, angry, anxious, fearful, bored, disgusted, and
neutral) [33]. Although the dataset contains a limited number
of speech utterances, the acted nature and labeled genders of
the dataset make it suitable for our study. To make intuitive
explanations, we followed the activation and pleasantness axes
of Russel’s circumplex emotion model for negative/positive
relationships between emotions [34]. Intelligible paralinguistic
speech features were computed using DisVoice feature ex-
traction library. Glottal [22], prosodic [24] and phonological
[23] static features were computed. The feature set consists of
247 features that were derived from the descriptors and their
functions.

We used several classification algorithms with different
characteristics; Random Forest (RF), Decision Tree (DT), Sup-
port Vector Machine (SVM), K Nearest Neighbors (KNN), and
Multilayer Perceptron (MLP). A train-test split was applied
with an 8:2 ratio. The random seed is set to 0 to ensure repeata-
bility. First, we trained all the models using the full dataset
with the full set of intelligible paralinguistic features. Then, we
utilized Shapley Additive explanations (SHAP) to determine
the importance of each feature for a specific prediction. We
applied independent t-tests to statistically assess the level of
difference in features between genders and emotional classes.
After including only a subset of the most informative features,
we re-trained the models and reported the metrics against the
full set. Secondly, we divided the dataset to achieve a binary
classification problem to calculate emotion-specific results. To
do that, we isolated an emotion class and randomly selected
the same size of data points from the rest of the dataset and
repeated this for each class. For each binary classification
problem, we trained each model to get SHAP values for each
feature and re-trained the models with a subset of the most
informative features, and reported the metrics. We repeated
this task with the full dataset versus with only one gender. In
the end, as the combination of eight emotion items (i.e., sets



of each emotion, neutral, and all emotions), three gender items
(i.e., sets of each gender and both genders together), and five
classifiers, we executed 120 reports Figure 3.

In summary, our research design for each research question
is as follows:

• RQ1 / EXP1 : Create a balanced subset for each emo-
tional class by randomly sampling from the excluded
classes against the focused class. Train 5 different models
and calculate SHAP values for each feature.

• RQ2 / EXP2 : For each model and SHAP output from
EXP1, train the same algorithm with a subset2 of features.
For each instance in EXP1, another training with the
subset was executed.

• RQ3 / EXP3: Repeat EXP1 for each gender, and compare
feature distributions for genders. Disclose the most robust
and prone features for emotion classes and genders.

Fig. 3: Experiment Flow Diagram

V. RESULTS
Our experiments showed that changes in emotional state

of the speaker are traceable by analyzing the paralinguistic
speech features. These corresponding features differ based on
gender, and also possibly other characteristics of speakers.

2To keep the variance while reducing the input size, the subset size is fixed
to the five most informative features for each experiment.

Most of the information of speech audio is carried by
the fundamental frequency (F0) and its descriptors. Still,
the emotional state influences different paralinguistic speech
features such as HRF, voiced segment, and statistical functions
of features. By investigating this affinity, we can enhance
model explainability, enable feature-level fusion for multi-
modal applications, and create personalized models that can
be deployed on personal devices.

A. Emotion Classes and Gender

1) Anger: The most informative feature for anger in ’male’
speakers are NAQ, HRF, and descriptors of the F0. For ’fe-
male’ speakers, the most informative features are the amount
of energy of unvoiced segments, MSE of F0 (Table II). Having
a low average in energy of the unvoiced segments along with
a high MSE of F0 means the speaker has peaks both energy-
wise and pitch-wise.

Results show that having pressured and breathy phonemes
are likely to be a sign of anger in male speakers. Furthermore,
having peaked fundamental frequency and poorly vocalized
phonemes are likely to be a sign of anger in female speakers.

Feature Angry Mean Neutral Mean p-value M Mean FM Mean p-val M-FM

avg NAQ 0.01702 0.01110 p < .05 0.01510 0.01873 p < .05

F0avg 219.6217 147.2545 p < .05 203.5409 234.0224 p < .05

F0msemax 1663.6183 293.1819 p < .05 1136.4265 2135.7305 p < .05

avg1Eunvoiced -56.4941 -42.1615 p < .05 -54.8625 -57.9551 p > .05

avg HRF 316.4295 164.1660 p > .05 6135.2749 11537.5397 p > .05

TABLE II: Statistics of the Most Informative Features, Class = "Anger",
M=Male, FM= Female

2) Boredom: The most informative features for boredom
in male speakers are the measurements of the tilt of F0, the
energy and duration of the voiced and unvoiced segments, and
F0 of the last voiced segment. The most informative features
for boredom in female speakers are F0 of the last voiced
segments, H1H2, the tilt of F0, and HRF.

Having a higher standard deviation and lower tilt in the
last voiced segment means that male speakers finish their
bored speech by more gradually lowering the amplitude of the
F0 compared to females. For female speakers, the difference
between the fundamental and the second frequency gets lower
and the speech gets prosaic. As boredom occurs in the speech,
HRF gets higher for female speakers than it gets for male
speakers (Table III).

Feature Bored Mean Neutral Mean p-value M Mean FM Mean p-val M-FM

F0 tilt max 133.5792 302.5252 p < .05 76.1814 177.2515 p > .05

F0 tilt std 208.3606 283.6525 p < .05 162.3647 243.3574 p < .05

Vrate 2.1566 2.8953 p < .05 2.2233 2.10594 p > .05

Last F0 121.1462 116.2330 p > .05 90.0769 144.7859 p < .05

Last Energy -19.1551 -18.0254 p > .05 -17.8513 -20.1472 p < .05

TABLE III: Statistics of the Most Informative Features, Class = "Boredom",
M=Male, FM= Female

3) Disgust: The most important features for disgust in
male speakers are descriptors of F0, maximum of tilt, HRF,
and descriptors of phonological stop and nasal phonemes.
For female speakers, descriptors of phonological flaps, and



descriptors of HRF and F0 are the most informative features
according to SHAP values.

Results show that male speakers have a closer to normal
distribution of F0 in disgusted speech, pronunciation of nasal
phonemes gets weaker, and stop phonemes get more pressur-
ized compared to female speakers. An increase in the standard
deviation of HRF and log-likelihood of flap phonemes are
important features for classifying disgust in female speakers
(Table IV). This shows that female speakers tend to change
the breathiness of their voices frequently. Female speakers also
put a varying emphasis on their flap phonemes when they
are disgusted in contrast to males. (p-value disgust vs neutral
M > 0.05, FM < 0.05)

Feature Disgust Mean Neutral Mean p-value M Mean FM Mean p-val M-FM

F0 kurtosis 0.0713 0.5580 p > .05 1.0381 -0.2324 p < .05

stop mean 0.2318 0.2952 p < .05 0.3883 0.1826 p < .05

nasal mean -0.4059 -0.2722 p < .05 -0.5168 -0.3710 p < .05

flap mean 0.0889 0.0281 p < .05 0.0703 0.0947 p > .05

std HRF 3059.8902 2915.2193 p > .05 405.3850 3894.1630 p < .05

TABLE IV: Statistics of the Most Informative Features, Class = "Disgust",
M=Male, FM= Female

4) Anxiety / Fear: The most informative features for male
speakers and class fear are the average F0 of the last voiced
segment, QOQ, HRF and descriptors of log-likelihood of the
back phonemes. For female speakers, the most informative
features are the log-likelihood of stop phonemes and the tilt
of the F0.

Results show that male speakers increase the number of
quasi-glottal openings and speak the phonemes in rush. For
female speakers, on the other hand, the deviation from F0 and
the speed of this deviation increases significantly compared to
male speakers (Table V).

Feature Fear Mean Neutral Mean p-value M Mean FM Mean p-val M-FM

Last F0 188.4097 116.2330 p < .05 152.8503 227.2017 p < .05

avg QOQ 0.5035 0.4659 p < .05 0.5002 0.5071 p > .05

stop mean 0.2585 0.2952 p > .05 0.3475 0.1615 p < .05

std F0 32.7045 25.3972 p < .05 25.9408 40.0830 p < .05

tilt F0 -211.0739 -132.4231 p < .05 -218.2681 -203.2257 p > .05

TABLE V: Statistics of the Most Informative Features, Class = "Anxiety /
Fear", M=Male, FM= Female

5) Happiness: For the emotion class happiness, the most
impactful features for male speakers are H1H2, log-likelihood
of consonantal phonemes and descriptors of F0. For fe-
male speakers, happiness alters the features of NAQ, labial
phonemes, and kurtosis of the tilt of energy at the unvoiced
segments.

Results show that for male speakers, H1H2 and maximum
tilt of F0 get higher, meaning that they tend to use more
distinct pitches while speaking happily. For female speak-
ers, on the other hand, the standard deviation of NAQ gets
higher, meaning that they use distinctive intensities for some
phonemes, especially labial and dental classes. (Table VI).

6) Sadness: The most informative features for sad speech
by male speakers are descriptors of pause duration in the
speech, HRF, and descriptors of F0. For female speakers with

Feature Happy Mean Neutral Mean p-value M Mean FM Mean p-val M-FM

H1H2 10.3847 12.5532 p < .05 12.4206 9.1354 p < .05

F0tiltMin -888.4789 -619.7270 p < .05 -1071.7582 -776.0120 p < .05

Consonantal 0.5764 0.7731 p < .05 0.6437 0.5352 p < .05

NAQ 0.0174 0.0111 p < .05 0.0150 0.0189 p < .05

Labial -0.1386 -0.0991 p > .05 -0.1056 -0.1588 p > .05

TABLE VI: Statistics of the Most Informative Features, Class =
"Happiness", M=Male, FM= Female

sad speech, the most informative features are log-likelihood
of strident and vocalic phonemes along with descriptors of F0
and HRF.

Results show that male speakers are not easily distin-
guishable from female speakers in sad speech. Although the
disparity of most features are not distinctive, male speakers
lower their tonal variance more than female speakers. For
female speakers on the other hand, their pronunciation on
strident and vocalic phonemes gets more emphasised while
speaking sadly (Table VII).

Feature Sad Mean Neutral Mean p-value M Mean FM Mean p-val M-FM

Dur. Pause 0.3812 0.0327 p < .05 0.3216 0.4214 p < .05

std HRF 3713.8988 2915.2193 p > .05 339.9793 5993.5741 p > .05

mse F0 235.6563 293.1819 p > .05 120.5276 313.4459 p < .05

Strident 0.1352 -0.1427 p < .05 0.0701 0.1792 p < .05

kurt. Vocalic 0.7297 -0.4862 p < .05 0.3097 1.0135 p < .05

TABLE VII: Statistics of the Most Informative Features, Class = "Sad",
M=Male, FM= Female

B. Reduced Features

For each emotion and gender, we re-trained our models with
only a subset of the emotions. While processing time, CPU
usage, and input size decreased, we recorded the accuracy,
model size, and input size. These subsets were taken in a way
that while we reduce the input size, we aimed to keep the
variance under the scope. As SHAP values differed among
models, we decided to keep the five most informative features
for each experiment (See Appendix A for full feature subsets
for each model).

Each classifier ended up with 12 experiments with the full
set and 12 with a subset. Results show that selectively reducing
the input does not have a significant effect on accuracy (p
> .05) on four of five models (Table VIII). Thus, we can
achieve corresponding results while we drastically reduce the
input size and computation power for extracting the features
(Figure 4).

Model Full Set Mean Sub Set Mean Ind. T-Test Value p Significance

rf 0.8613 0.7728 t = 2.3870 p < .05

dt 0.6890 0.770 t = -1.6942 p > .05

knn 0.6090 0.5701 t = 0.7682 p > .05

mlp 0.6024 0.5462 t = 1.0809 p > .05

svm 0.6880 0.6253 t = 1.5898 p > .05

TABLE VIII: Individual t-test results for accuracy of each model, Full Set
vs Sub Set



Fig. 4: Accuracy (red) and Input Size (blue), Full Set vs Subset

C. Feature Robustness Against Genders and Emotions

Our experiments with paralinguistic speech features show
that male and female speakers express emotions in different
ways. Although there are no absolute features that are ex-
plicitly informative for specific genders, some features still
remain more informative for specific emotions and genders.
The activation level and positiveness of emotions seem to be
relative to the pronunciation of phonemes.

For male speakers, HRF is more informative for most
emotional classes compared to female speakers. As HRF is
related to the monotonousness of speech, this yields the infor-
mation that male speakers tend to alter their excitement more
potently. For negative emotions, NAQ remains informative
as it is associated with the pressure of general speech. The
amount of pauses and the combination of unvoiced segments
and pauses in speech provides more information for some
emotional classes for males. In reverse to mean of changes
in some phonemes, tilt and kurtosis of those changes yield
more influential information for some emotional classes.

Female speakers also have distinctive features for certain
emotion classes. Changes to the means of strident, voice,
and nasal phonemes produce decisive information. This yields
the information that females tend to alter the presence of
pronunciation on certain phonemes. Contrasting with males,
NAQ is informative for positive emotions in female speakers.
The amount of voiced and unvoiced segments along with their
sequential combinations are consistently more informative for
negative emotion classes.

For all the emotion classes and genders, the base frequency
and its descriptors stand highly informative. Notably, MSE and
tilt of the F0 are highly informative as they are a perspective
of how the base speaking frequency is altered by the speaker.
HRF is also informative for all emotion classes as it displays
the eventfulness of a speech, therefore, it changes a lot with
the emotional changes. As the amount of arousal decreases, the
amount of change in most phonemes becomes more decisive
for both genders. The difference in GCI between genders
increases when a negative emotion is expressed. Even though
GCI is not highly informative for classifying fear yet it is still
significant between genders.

VI. DISCUSIONS
In this study, we performed an analysis of intelligible

paralinguistic speech features for SER among different gen-
der and emotion classes. We found out that the gender of
the speaker and the emotion to be expressed influence the
speech in an observable way. Changes in glottal, phonological,
and prosodical speech features are deterministic for differ-
ent emotions and genders. Negative emotions tend to have
common feature importance on the descriptors of F0 and
HRF. The levels of pleasantness and activation of emotions
have a coherent relationship with intelligible paralinguistic
speech features such as HRF, energy, and, amplitude quotients.
Pronunciations of vowels are altered significantly when the
stress in speech changes. As the activation level increases,
tilt and other descriptors of F0, and H1H2 become more
informative according to SHAP values. For negative emotions
(i.e. sadness), the duration and amount of pauses in the speech
become more informative.

Our experiments on reducing the input size based on fea-
ture informativeness show that if prior information about the
speaker is known such as gender, it is possible to reduce
the input size drastically while not compromising on accu-
racy. This enables efficient, personalized, and context-adaptive
models while adding to the affective behaviour summarisation
discussion for SER.

Analyses on feature robustness to gender show that there
is an opportunity for development in feature engineering
and selection in SER. Some emotions are easier to capture
from a speech by implementing bias. While some frequency-
related paralinguistic speech features remain informative, some
features become redundant for certain emotions and genders.
Our findings add to the discussion of contextualized modelling
of SER for use cases in which only the occurrence of a set of
emotions is concerned such as customer service calls.

Our observations have theoretical and practical implications.
Researchers can use our results to further study the effect and
explainability of speech features on SER. A new data fusion
approach can be established by employing paralinguistic fea-
tures along with acoustic features for more generalizable and
personalized SER. The developers of SER solutions can use
our results for feature engineering to train lightweight models
which enables these models to run on edge devices. Addi-
tionally, our results can guide practitioners in creating more
resilient SER models, that are robust against discriminating
biases based on gender and ethnicity.

VII. CONCLUSIONS
In this study, we investigated SER with paralinguistic speech

features to analyze differences between the emotional ex-
pressions of different genders. Our results show that intel-
ligible paralinguistic speech features can be informative for
SER, and there are significant differences in certain speech
features between genders. Additionally, under circumstances
where prior knowledge about the speaker is available, it is
possible to shrink the input size, processing time, and possibly
processing power. Also, if the presence of a specific emotion



in a speech is pondered for a context-aware application, it
is possible to reduce the model complexity by utilizing a
rule-based decision layer of feature selection. Finally, the
informativeness of features depends on the expressed emotion
and the speaker’s gender. Therefore, feature selection can also
be done considering speaker characteristics.

A. Future Work

Obscure paralinguistic speech features are altered by the
age of the speaker [35]. This might make the employment of
intelligible paralinguistic speech features even more essential
for the assistance of elderly people in hospitals and smart home
environments. Similarly, the expertise of the speaker affects the
way the words are spoken [36]. Using paralinguistic speech
features on periodic verbal quizzes in classroom environments
could yield information about students’ learning experiences
and understanding of the subject.

Recognizing emotions under noisy conditions is a challeng-
ing task for SER applications. As most of the intelligible
paralinguistic speech features are expected to be independent
of recording quality contrary to obscure paralinguistic features,
it is possible to implement these features for SER under noisy
conditions and low-quality audio communications such as
phone calls. Also, it is still possible to extend the performance
and capabilities by implementing gender information and
speaker-specific speech habits.

While our study’s findings remain consistent, it is essential
to acknowledge that we solely utilized one acted dataset
for our analysis. In order to enhance the generalizability
of our results, it is recommended to incorporate a diverse
range of datasets including both acted and non-acted settings.
Furthermore, to strengthen the robustness and reliability of the
results, conducting the study with multiple random seeds and
applying corresponding significance tests would be beneficial.
By adopting these measures, we can achieve a more compre-
hensive understanding of the phenomena under investigation
and maintain the overall validity of our conclusions.

VIII. ETHICAL IMPACT STATEMENT

In this study, we used EmoDB, which is a public dataset
that has been commonly used in affective computing stud-
ies. The dataset contains no personally identifiable attributes,
posing no privacy threats. The data have been collected from
individuals who responded to a call for participation. Twenty
participants contributed, equally representing both sexes. The
dataset consists of German speech which might affect the
generalizability of our findings. Specifically, some of the
intelligible paralinguistic speech features might be language
dependent, thus, they potentially differ in distribution based on
the spoken language. Further research is required to explore
the effect of spoken language on the distribution of intelligible
paralinguistic speech features.

Our study shows that a subset of intelligible speech features
represents particular emotions better. Also, the distribution
of some of such features is significantly different between
genders. These findings lead to several contributions; Firstly,

SER models can be trained with a subset of features that
are much smaller yet comparably effective. Secondly, with
prior knowledge of the gender of a user, gender-specific SER
models can be utilized, thus, yielding better performance.
Moreover, our findings can be used to select features that are
informative regarding emotions but uninformative regarding
gender. This might be very useful in scenarios where gender
is considered sensitive. The second contribution comes with
an indirect risk. Our findings indicate that better SER models
can be developed when the gender of the speaker is known.
This might motivate practitioners to collect gender information
purely to improve SER performance, and the collected gender
information might be used in discriminating against users.
However, it should also be noted that in any scenario where
speech signals are analyzed, gender can be inferred without
difficulty. Thus, we consider our work alleviating this issue
by enabling practitioners to train SER models with gender-
unspecific speech features.

APPENDIX

Appendix : Table of Feature Informativeness and Statistical
Tests (Anonymized). [37]

REFERENCES

[1] R. Cowie, “Perceiving emotion: towards a realistic understanding of the
task,” Philosophical Transactions of the Royal Society B: Biological
Sciences, vol. 364, pp. 3515–3525, Dec. 2009.

[2] R. Banse and K. R. Scherer, “Acoustic profiles in vocal emotion
expression.,” Journal of Personality and Social Psychology, vol. 70,
no. 3, pp. 614–636, 1996.

[3] B. Zhang, E. M. Provost, and G. Essl, “Cross-corpus acoustic emotion
recognition with multi-task learning: Seeking common ground while
preserving differences,” IEEE Transactions on Affective Computing,
vol. 10, pp. 85–99, Jan. 2019.

[4] J. Zhao, R. Li, J. Liang, S. Chen, and Q. Jin, “Adversarial domain
adaption for multi-cultural dimensional emotion recognition in dyadic
interactions,” in Proceedings of the 9th International on Audio/Visual
Emotion Challenge and Workshop, ACM, Oct. 2019.

[5] P. P. Dahake, K. Shaw, and P. Malathi, “Speaker dependent speech
emotion recognition using MFCC and support vector machine,” in
2016 International Conference on Automatic Control and Dynamic
Optimization Techniques (ICACDOT), IEEE, Sept. 2016.

[6] H. Meng, T. Yan, F. Yuan, and H. Wei, “Speech emotion recognition
from 3d log-mel spectrograms with deep learning network,” IEEE
Access, vol. 7, pp. 125868–125881, 2019.

[7] S. G. Koolagudi, N. Kumar, and K. S. Rao, “Speech emotion recog-
nition using segmental level prosodic analysis,” in 2011 International
Conference on Devices and Communications (ICDeCom), IEEE, Feb.
2011.

[8] S. Yoon, S. Byun, and K. Jung, “Multimodal speech emotion recognition
using audio and text,” in 2018 IEEE Spoken Language Technology
Workshop (SLT), pp. 112–118, 2018.

[9] T.-W. Sun, “End-to-end speech emotion recognition with gender infor-
mation,” IEEE Access, vol. 8, pp. 152423–152438, 2020.

[10] W. Fitch, “The evolution of speech: a comparative review,” Trends in
Cognitive Sciences, vol. 4, no. 7, pp. 258–267, 2000.

[11] L. Zhang and H. Xing, “A study on lexical knowledge and semantic
features of speech act verbs based on language facts,” in Lecture Notes
in Computer Science, pp. 187–197, Springer International Publishing,
2022.

[12] “Disvoice - references.” https://disvoice.readthedocs.io/en/latest/
reference.html. Accessed: 2022-04-13.
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